THALES

Consensus protocols for Blockchain

Ambre Toulemonde

Université de Versailles Saint-Quentin-en-Yvelines and Thales DIS

RESSI 2020 – December 2020

The Byzantine Generals problem, 1982

> How to reach an agreement on a value in a distributed manner?

Basic security properties

Safety and Liveness

Practical Byzantine Fault Tolerance (PBFT)

- First practical consensus protocol
- Achieve liveness and safety in partial synchrony
- > Small set of n participants whose at most $\lceil \frac{n-1}{3} \rceil$ may be Byzantine

Nakamoto Bitcoin protocol, 2008

Blockchain technology

- Distributed ledger or chain of blocks where a new block is added after reaching a consensus
- Data in blocks are immutable once written into the blockchain

Bitcoin Proof-of-Work consensus protocol

- ▶ Being the first who solves the hash puzzle
- New needs for consensus protocols: scalability and incentivation
- Issues: energy waste problem, fork problem, selfish strategy, etc.

Many new consensus protocols proposed in the literature

➤ Avoid the issues of the Bitcoin Proof-of-Work consensus protocol

Consensus protocol using leader election protocol

➤ A participant is elected as leader whose role is to provide the next block of data to be added in the ledger

Contribution

- > Formal model of leader election
- Security properties: uniqueness, fairness, unpredictability, forward unpredictability, liveness
 - Revisit fairness and unpredictability properties
- Security analysis of two protocols: attack or prove the security properties
 - Single Secret Leader Election (SSLE) of Boneh, Eskandarian, Hanzlik and Greco (2020)
 - Algorand of Chen and Micali (2016)

